(1) Nixon, C. A.; Thelen, A. E.; Cordiner, M. A.; Kisiel, Z.; Charnley, S. B.; Molter, E. M.; Serigano, J.; Irwin, P. G. J.; Teanby, N. A.; Kuan, Y.-J. Detection of Cyclopropenylidene on Titan with ALMA. Astron. J. 2020, 160 (5), 205. https://doi.org/10.3847/1538-3881/abb679.
(2) Postberg, F.; Khawaja, N.; Abel, B.; Choblet, G.; Glein, C. R.; Gudipati, M. S.; Henderson, B. L.; Hsu, H.-W.; Kempf, S.; Klenner, F.; Moragas-Klostermeyer, G.; Magee, B.; Nölle, L.; Perry, M.; Reviol, R.; Schmidt, J.; Srama, R.; Stolz, F.; Tobie, G.; Trieloff, M.; Waite, J. H. Macromolecular Organic Compounds from the Depths of Enceladus. Nature 2018, 558 (7711), 564–568. https://doi.org/10.1038/s41586-018-0246-4.
(3) Shirley, J. H.; Jamieson, C. S.; Dalton, J. B. Europa’s Surface Composition from near-Infrared Observations: A Comparison of Results from Linear Mixture Modeling and Radiative Transfer Modeling. Earth Sp. Sci. 2016, 3 (8), 326–344. https://doi.org/10.1002/2015EA000149.
(4) Space Science Instituture, Lawrence Livermore National Laboratory https://www.llnl.gov/news/lab-launches-interdisciplinary-space-science-institute.
(5) Miller, S. L. A Production of Amino Acids Under Possible Primitive Earth Conditions. Science (80-. ). 1953, 117 (3046), 528–529. https://doi.org/10.1126/science.117.3046.528.
(6) Schulz, F.; Maillard, J.; Kaiser, K.; Schmitz-Afonso, I.; Gautier, T.; Afonso, C.; Carrasco, N.; Gross, L. Imaging Titan’s Organic Haze at Atomic Scale. Astrophys. J. 2021, 908 (1), L13. https://doi.org/10.3847/2041-8213/abd93e.
(7) Niemann, H. B.; Atreya, S. K.; Demick, J. E.; Gautier, D.; Haberman, J. A.; Harpold, D. N.; Kasprzak, W. T.; Lunine, J. I.; Owen, T. C.; Raulin, F. Composition of Titan’s Lower Atmosphere and Simple Surface Volatiles as Measured by the Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer Experiment. J. Geophys. Res. 2010, 115 (E12), E12006. https://doi.org/10.1029/2010JE003659.
(8) Vuitton, V.; Yelle, R. V.; Klippenstein, S. J.; Hörst, S. M.; Lavvas, P. Simulating the Density of Organic Species in the Atmosphere of Titan with a Coupled Ion-Neutral Photochemical Model. Icarus 2019, 324, 120–197. https://doi.org/10.1016/j.icarus.2018.06.013.
(9) Hörst, S. M.; Vuitton, V.; Yelle, R. V. Origin of Oxygen Species in Titan’s Atmosphere. J. Geophys. Res. 2008, 113 (E10), E10006. https://doi.org/10.1029/2008JE003135.
(10) Kuiper, G. P. Titan: A Satellite with an Atmosphere. Astrophys. J. 1944, 100, 378. Https://Doi.Org/10.1086/144679.
(11) Lutz, B. L.; De Bergh, C.; Owen, T. Titan: Discovery of Carbon Monoxide in Its Atmosphere. Science (80-. ). 1983, 220 (4604), 1374–1375. https://doi.org/10.1126/science.220.4604.1374.
(12) Hanel, R.; Conrath, B.; Flasar, F. M.; Kunde, V.; Maguire, W.; Pearl, J.; Pirraglia, J.; Samuelson, R.; Herath, L.; Allison, M.; Cruikshank, D.; Gautier, D.; Gierasch, P.; Horn, L.; Koppany, R.; Ponnamperuma, C. Infrared Observations of the Saturnian System from Voyager 1. Science (80-. ). 1981, 212 (4491), 192–200. https://doi.org/10.1126/science.212.4491.192.
(13) Kunde, V. G.; Aikin, A. C.; Hanel, R. A.; Jennings, D. E.; Maguire, W. C.; Samuelson, R. E. C4H2, HC3N and C2N2 in Titan’s Atmosphere. Nature 1981, 292 (5825), 686–688. https://doi.org/10.1038/292686a0.
(14) Maguire, W. C.; Hanel, R. A.; Jennings, D. E.; Kunde, V. G.; Samuelson, R. E. C3H8 and C3H4 in Titan’s Atmosphere. Nature 1981, 292 (5825), 683–686. https://doi.org/10.1038/292683a0.
(15) Samuelson, R. E.; Hanel, R. A.; Kunde, V. G.; Maguire, W. C. Mean Molecular Weight and Hydrogen Abundance of Titan’s Atmosphere. Nature 1981, 292 (5825), 688–693. https://doi.org/10.1038/292688a0.
(16) Samuelson, R. E.; Maguire, W. C.; Hanel, R. A.; Kunde, V. G.; Jennings, D. E.; Yung, Y. L.; Aikin, A. C. CO 2 on Titan. J. Geophys. Res. Sp. Phys. 1983, 88 (A11), 8709–8715. https://doi.org/10.1029/JA088iA11p08709.
(17) Coustenis, A.; Salama, A.; Schulz, B.; Ott, S.; Lellouch, E.; Encrenaz, T. .; Gautier, D.; Feuchtgruber, H. Titan’s Atmosphere from ISO Mid-Infrared Spectroscopy. Icarus 2003, 161 (2), 383–403. https://doi.org/10.1016/S0019-1035(02)00028-3.
(18) Gudipati, M. S.; Jacovi, R.; Couturier-Tamburelli, I.; Lignell, A.; Allen, M. Photochemical Activity of Titan’s Low-Altitude Condensed Haze. Nat. Commun. 2013, 4 (1), 1648. https://doi.org/10.1038/ncomms2649.
(19) Fortes, A. D. Titan’s Internal Structure and the Evolutionary Consequences. Planet. Space Sci. 2012, 60 (1), 10–17. https://doi.org/10.1016/j.pss.2011.04.010.
(20) Titan’s Underground Ocean, NASA Science https://science.nasa.gov/science-news/science-at-nasa/2012/28jun_titanocean#:~:text=Methane is abundant in Titan’s,supply to maintain its abundance.&text=A liquid water ocean%2C %22salted,liberate methane from the ice.
(21) Kalousová, K.; Sotin, C. The Insulating Effect of Methane Clathrate Crust on Titan’s Thermal Evolution. Geophys. Res. Lett. 2020, 47 (13). https://doi.org/10.1029/2020GL087481.
(22) NASA’s Cassini Reveals Surprises with Titan’s Lakes, NASA Science https://www.nasa.gov/feature/jpl/nasas-cassini-reveals-surprises-with-titans-lakes.
(23) Lopes, R. M. C.; Mitchell, K. L.; Stofan, E. R.; Lunine, J. I.; Lorenz, R.; Paganelli, F.; Kirk, R. L.; Wood, C. A.; Wall, S. D.; Robshaw, L. E.; Fortes, A. D.; Neish, C. D.; Radebaugh, J.; Reffet, E.; Ostro, S. J.; Elachi, C.; Allison, M. D.; Anderson, Y.; Boehmer, R.; Boubin, G.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M. A.; Johnson, W. T. K.; Kelleher, K.; Muhleman, D. O.; Ori, G.; Orosei, R.; Picardi, G.; Posa, F.; Roth, L. E.; Seu, R.; Shaffer, S.; Soderblom, L. A.; Stiles, B.; Vetrella, S.; West, R. D.; Wye, L.; Zebker, H. A. Cryovolcanic Features on Titan’s Surface as Revealed by the Cassini Titan Radar Mapper. Icarus 2007, 186 (2), 395–412. https://doi.org/10.1016/j.icarus.2006.09.006.
(24) Lopes, R. M. C.; Kirk, R. L.; Mitchell, K. L.; LeGall, A.; Barnes, J. W.; Hayes, A.; Kargel, J.; Wye, L.; Radebaugh, J.; Stofan, E. R.; Janssen, M. A.; Neish, C. D.; Wall, S. D.; Wood, C. A.; Lunine, J. I.; Malaska, M. J. Cryovolcanism on Titan: New Results from Cassini RADAR and VIMS. J. Geophys. Res. Planets 2013, 118 (3), 416–435. https://doi.org/10.1002/jgre.20062.
(25) Gombosi, T. I.; Armstrong, T. P.; Arridge, C. S.; Khurana, K. K.; Krimigis, S. M.; Krupp, N.; Persoon, A. M.; Thomsen, M. F. Saturn’s Magnetospheric Configuration. In Saturn from Cassini-Huygens; Springer Netherlands: Dordrecht, 2009; pp 203–255. https://doi.org/10.1007/978-1-4020-9217-6_9.
(26) Roussos, E.; Kollmann, P.; Krupp, N.; Kotova, A.; Regoli, L.; Paranicas, C.; Mitchell, D. G.; Krimigis, S. M.; Hamilton, D.; Brandt, P.; Carbary, J.; Christon, S.; Dialynas, K.; Dandouras, I.; Hill, M. E.; Ip, W. H.; Jones, G. H.; Livi, S.; Mauk, B. H.; Palmaerts, B.; Roelof, E. C.; Rymer, A.; Sergis, N.; Smith, H. T. A Radiation Belt of Energetic Protons Located between Saturn and Its Rings. Science (80-. ). 2018, 362 (6410), eaat1962. https://doi.org/10.1126/science.aat1962.
(27) Luhmann, J. G. Titan’s Ion Exosphere Wake: A Natural Ion Mass Spectrometer? J. Geophys. Res. Planets 1996, 101 (E12), 29387–29393. https://doi.org/10.1029/96JE03307.
(28) Waite, J. H.; Young, D. T.; Cravens, T. E.; Coates, A. J.; Crary, F. J.; Magee, B.; Westlake, J. The Process of Tholin Formation in Titan’s Upper Atmosphere. Science (80-. ). 2007, 316 (5826), 870–875. https://doi.org/10.1126/science.1139727.
(29) Coates, A. J.; Crary, F. J.; Lewis, G. R.; Young, D. T.; Waite, J. H.; Sittler, E. C. Discovery of Heavy Negative Ions in Titan’s Ionosphere. Geophys. Res. Lett. 2007, 34 (22), L22103. https://doi.org/10.1029/2007GL030978.
(30) Thaddeus, P.; Vrtilek, J. M.; Gottlieb, C. A. Laboratory and Astronomical Identification of Cyclopropenylidene, C3H2. Astrophys. J. 1985, 299, L63. https://doi.org/10.1086/184581.
(31) Guadagnini, R.; Schatz, G. C.; Walch, S. P. Ab Initio and RRKM Studies of the Reactions of C, CH, and 1 CH 2 with Acetylene. J. Phys. Chem. A 1998, 102 (29), 5857–5866. https://doi.org/10.1021/jp9811070.
(32) Vuitton, V.; Yelle, R. V.; McEwan, M. J. Ion Chemistry and N-Containing Molecules in Titan’s Upper Atmosphere. Icarus 2007, 191 (2), 722–742. https://doi.org/10.1016/j.icarus.2007.06.023.
(33) Willacy, K.; Allen, M.; Yung, Y. A NEW ASTROBIOLOGICAL MODEL OF THE ATMOSPHERE OF TITAN. Astrophys. J. 2016, 829 (2), 79. https://doi.org/10.3847/0004-637X/829/2/79.
(34) Wilson, E. H. Current State of Modeling the Photochemistry of Titan’s Mutually Dependent Atmosphere and Ionosphere. J. Geophys. Res. 2004, 109 (E6), E06002. https://doi.org/10.1029/2003JE002181.
(35) Walch, S. P. Characterization of the Minimum Energy Paths for the Reactions of CH( X 2 Π) and 1 CH 2 with C 2 H 2. J. Chem. Phys. 1995, 103 (16), 7064–7071. https://doi.org/10.1063/1.470334.
(36) Canosa, A.; Páramo, A.; Le Picard, S. D.; Sims, I. R. An Experimental Study of the Reaction Kinetics of C2(X1Σg+) with Hydrocarbons (CH4, C2H2, C2H4, C2H6 and C3H8) over the Temperature Range 24–300 K: Implications for the Atmospheres of Titan and the Giant Planets. Icarus 2007, 187 (2), 558–568. https://doi.org/10.1016/j.icarus.2006.10.009.
(37) Hébrard, E.; Dobrijevic, M.; Loison, J. C.; Bergeat, A.; Hickson, K. M.; Caralp, F. Photochemistry of C 3 H p Hydrocarbons in Titan’s Stratosphere Revisited. Astron. Astrophys. 2013, 552, A132. https://doi.org/10.1051/0004-6361/201220686.
(38) Krasnopolsky, V. A. A Photochemical Model of Titan’s Atmosphere and Ionosphere. Icarus 2009, 201 (1), 226–256. https://doi.org/10.1016/j.icarus.2008.12.038.
(39) Chu, T.-C.; Buras, Z. J.; Oßwald, P.; Liu, M.; Goldman, M. J.; Green, W. H. Modeling of Aromatics Formation in Fuel-Rich Methane Oxy-Combustion with an Automatically Generated Pressure-Dependent Mechanism. Phys. Chem. Chem. Phys. 2019, 21 (2), 813–832. https://doi.org/10.1039/C8CP06097E.
(40) Seshadri, V.; Westmoreland, P. R. Concerted Reactions and Mechanism of Glucose Pyrolysis and Implications for Cellulose Kinetics. J. Phys. Chem. A 2012, 116 (49), 11997–12013. https://doi.org/10.1021/jp3085099.
(41) Violi, A.; Kubota, A.; Truong, T. N.; Pitz, W.; Westbrook, C. K.; Sarofim, A. F. A Hybrid Molecular Dynamics – Kinetic Monte Carlo Approach for the Simulation of the Growth of Soot Precursors. In 29th International Symposium on Combustion, Sapporo, Japan; 2001.
(42) Abolfath, R. M.; Carlson, D. J.; Chen, Z. J.; Nath, R. A Molecular Dynamics Simulation of DNA Damage Induction by Ionizing Radiation. Phys. Med. Biol. 2013, 58 (20), 7143–7157. https://doi.org/10.1088/0031-9155/58/20/7143.
(43) Quann, R. J. Modeling the Chemistry of Complex Petroleum Mixtures. Environ. Health Perspect. 1998, 106 (SUPPL. 6), 1441–1448. https://doi.org/10.1289/ehp.98106s61441.
(44) NASA. Titan Touchdown; NASA Jet Propulsion Laboratory: USA, 2017.
(45) Greicius, T. Seeing Titan with Infrared Eyes, NASA Science https://www.nasa.gov/image-feature/jpl/seeing-titan-with-infrared-eyes.
(46) Lakes of Titan, Wikipedia https://en.wikipedia.org/wiki/Lakes_of_Titan.
(47) Sotra Patera, Wikipedia https://en.wikipedia.org/wiki/Sotra_Patera.